Roll No. \square
Total No. of Questions: 09
B.Tech. (Sem.-1st)

ENGINEERING MATHEMATICS-I
Subject Code : AM-101 (2005-2010 Batches)
Paper ID : [A0111]
Time : 3 Hrs.
Max. Marks : 60

INSTRUCTION TO CANDIDATES :

1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
2. SECTION-B \& C have FOUR questions each.
3. Attempt any FIVE questions from SECTION B \& C carrying EIGHT marks each.
4. Select atleast TWO questions from SECTION - B \& C.

SECTION-A

1. Write briefly :
(a) If $x^{2}=a u+b v, y^{2}=a u-b v$, then prove that $\left(\frac{\partial u}{\partial x}\right)_{y}\left(\frac{\partial x}{\partial y}\right)_{v}=\frac{1}{2}$.
(b) If $u=\log \left(x^{2}+x y+y^{2}\right)$, then use Euler's theorem to show that

$$
x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=2
$$

(c) Express the integral $\int_{0}^{\infty} e^{-x^{4}} d x$ in terms of gamma function.
(d) Test the convergence/divergence of the series $\sum_{n=1}^{\infty} \frac{n^{2}}{3^{n}}$.
(e) Change the order of integration of $\int_{0}^{2 a} \int_{x^{2} / 4 a}^{3 a-x} f(x, y) d x d y$.
(f) Test whether the series $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{2 n-1}$ is absolutely convergent or not. Explain how?
(g) Use De-Moivre's theorem to express $\sin ^{5} \theta \cos ^{2} \theta$ in a series of sines of multiples of θ.
(h) Find the general value i^{i}.
(i) Verify that $f_{x y}=f_{y x}$, when $f(x, y)=\sin ^{-1}(y / x)$.
(j) Obtain the real part of $\tan (\mathrm{A}+i \mathrm{~B})$.

SECTION-B

2. (a) Trace the curve $y^{2}(a+x)=x^{2}(3 a-x)$ be giving all salient features in detail.
(b) Find the radius of curvature at the point (r, θ) of the curve $r=a(1-\cos \theta)$ and show that ρ^{2} varies as r^{2}.
3. (a) Find the area included between the curves $r=a(1-\cos \theta)$ and $r=a(1+\cos \theta)$.
(b) Find the surface of the solid generated by the revolution of the curve $x=a \cos ^{3} t, y=b \sin ^{3} t$ about y-axis.
4. (a) If $x^{x} y^{y} z^{z}=c$, then show that at $x=y=z, \frac{\partial^{2} z}{\partial x \partial y}=-(x \log e x)^{-1}$.
(b) Find the points on the surface $z^{2}=x y+1$ nearest to the origin
5. (a) Find the centre of gravity of the arc of the curve $x^{2 / 3}+y^{2 / 3}=a^{2 / 3}$ in the first quadrant.
(b) Expand $f(x, y)=\sin x y$ in ascending powers of $(x-1)$ and $(y-\pi / 2)$ by using Taylor's theroem up to second degree terms.

SECTION-C

6. (a) Evaluate $\int_{0}^{2 a} \int_{0}^{\sqrt{2 a x-x^{2}}}\left(x^{2}+y^{2}\right) d x d y$, by changing into polar co-ordinates.
(b) Find the volume bounded by the co-ordinate planes $x=0, y=0, z=0$ and the plane $\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1$.
7. (a) Find the centre and radius of the circle $x^{2}+y^{2}+z^{2}-2 x-4 y-6 z-2=0, x+2 y+2 z-20=0$.
(b) Find the equation of a cone whose semi vertical angle is $\pi / 4$, has its vertex at origin and axis along the line $x=-2 y=z$.
8. (a) If $\cos \alpha+\cos \beta+\cos \gamma=0=\sin \alpha+\sin \beta+\sin \gamma$, then prove that $\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma=\frac{3}{2}=\sin ^{2} \alpha+\sin ^{2} \beta+\sin ^{2} \gamma$
(b) If $\sin ^{-1}(u+i v)=\alpha+i \beta$ then prove that $\sin ^{2} \alpha$ and $\cosh ^{2} \beta$ are the roots of the equation
$x^{2}-\left(1+u^{2}+v^{2}\right) x+u^{2}=0$.
9. (a) Test for what values of x does the series
$\frac{x}{1.2}+\frac{x^{2}}{3.4}+\frac{x^{3}}{5.6}+\frac{x^{4}}{7.8}+\ldots \infty$
converges/diverges.
(b) Examine the convergence of the following series :
(i) $\sum_{n=1}^{\infty} \frac{e^{n}}{1+e^{2 n}}$
(ii) $\sum_{n=1}^{\infty} \frac{1}{1+2^{2}+3^{2}+\ldots+n^{2}}$
